Understanding When Dynamics-Invariant Data Augmentations Benefit Model-free Reinforcement Learning Updates

Nicholas E. Corrado, Josiah P. Hanna (University of Wisconsin – Madison) ncorrado@wisc.edu

We study how different aspects of data augmentation affect the data efficiency of RL and provide practical guidelines on how to most effectively apply data augmentation

Background & Motivation

Data augmentation (DA) is a technique in which RL agents generate additional synthetic experience by transforming real experience collected through environment interaction.

While prior work has demonstrated that incorporating augmented data directly into model-free RL updates can improve data efficiency, we lack a clear understanding of when and why augmented data improves data efficiency.

Our goal: understand which aspects of DA improve data efficiency and provide guidelines on how to most effectively apply DA.

In a toy navigation task, doubling the agent's data via DA is just as good as learning from x8 as much real data collected by the agent!

Aspects of Data Augmentation We focus on sparse-reward RL tasks with dynamics-invariant augmentations – augmentations which generate realistic data that respect the tasks dynamics and reward structure: $\longrightarrow (\tilde{\boldsymbol{s}}, \tilde{\boldsymbol{a}}, \tilde{r}, \tilde{\boldsymbol{s}}')$ Augmented data $(m{s}, m{a}, r, m{s}') \longrightarrow f$ Real data $p(\tilde{\boldsymbol{s}}'|\tilde{\boldsymbol{s}},\tilde{\boldsymbol{a}}) > 0 \quad \tilde{r} = r(\tilde{\boldsymbol{s}},\tilde{\boldsymbol{a}})$ Augmented data is realistic We study how three aspects of data augmentation affect data efficiency: Increasing state-action coverage Additional reward signal Decreasing the replay ratio of augmented data 3. (# of updates per augmented sample generated) Data Augmentation Framework Data Collection Collect (s, a, r, s') with π , and add it to the <u>observed replay buffer</u> Original goal Data Augmentation ----- $(\boldsymbol{s}, \boldsymbol{a}, r, \boldsymbol{s}') \longrightarrow \boldsymbol{f} \longrightarrow (\tilde{\boldsymbol{s}}, \tilde{\boldsymbol{a}}, \tilde{r}, \tilde{\boldsymbol{s}}')$ Generate augmentations of $(\boldsymbol{s}, \boldsymbol{a}, r, \boldsymbol{s}')$ and add them to the from the task's goal space. augmented replay buffer **Policy Improvement** -----1e5 $\pi_{\text{reg}} \to \pi^{\text{i}}$ Original data Update π using a fixed split of data sampled from <u>both replay buffers</u>

- 1. When designing new augmentations, focus on increasing coverage rather than generating additional reward signal.

2. Decrease the replay ratio of augmented data.