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We study how ditferent aspects

of data augmentation affect
the data ethiciency of RL. and
provide practical guidelines on
how to most eftectively apply
data augmentation

Background & Motivation

Data augmentation (DA) 1s a technique in which RL agents
generate additional synthetic experience by transtorming real
experience collected through environment interaction.

While prior work has demonstrated that incorporating augmented
data directly into model-free RL. updates can improve data
etticiency, we lack a clear understanding ot when and why
augmented data improves data efficiency.

Our goal: understand which aspects of DA improve data efficiency
and provide guidelines on how to most eftectively apply DA.
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In a toy navigation task, doubling the agent’s data via DA 1s just as

oood as learning from x8 as much real data collected by the agent!
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Aspects of Data Augmentation

We focus on sparse-reward RL tasks with dynamics-invariant
augmentations — augmentations which generate realistic data that
respect the tasks dynamics and reward structure:

r )
/ ~ ~ ~ ~/
Real data \. J Augmented data
Data augmentation function
Real data Augmented data

p(8'18,a) >0

Augmented data 1s realistic

r=r(s,a) -
CartPole dynamics are invariant
under translation and reflection

We study how three aspects of data augmentation attect data efficiency:
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. Increasing state-action coverage

= Improves exploration

2. Additional reward signal

Daiversifies the

3. Decreasing the replay ratio of augmented data
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Data Augmentation Framework

Data Collection

Augmented goal
(translated)

Collect (s, a,r,s’) with 7T, and ,
add it to the observed replay buffer
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TranslateGoal: Translate the agent’s goal to

Generate augmentations of |
(s,a,r,s’) and add them to the
augmented replay buffer

a new goal sampled uniformly at random
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from the task’s goal space.

Update 7T using a fixed split of data
sampled from both replay buffers
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DA often performs just as well when 1t increases state-action coverage
without generating any additional reward signal.
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Increasing the probability p of generating augmented data with reward signal
often yields minimal gains.
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Decreasing the replay ratio f of augmented data

Empirical Highlights

can dramatically improve data efficiency.
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Practical Guidelines

I. When designing new augmentations, focus on increasing

coverage rather than generating additional reward signal.

2. Decrease the replay ratio of augmented data.
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